搜索
您的当前位置:首页正文

无功补偿原理

来源:二三四教育网
无功补偿原理

电网中的电力负荷如电动机、变压器等,大部分属于感性负荷,在运行过程中需向这些设备提供相应的无功功率。在电网中安装并联电容器等无功补偿设备以后,可以提供感性负载所消耗的无功功率,减少了电网电源向感性负荷提供、由线路输送的无功功率,由于减少了无功功率在电网中的流动,因此可以降低线路和变压器因输送无功功率造成的电能损耗,这就是无功补偿。

无功补偿的基本原理是:把具有容性功率负荷的装置与感性功率负荷并联接在同一电路,能量在两种负荷之间相互交换。这样,感性负荷所需要的无功功率可由容性负荷输出的无功功率补偿。无功补偿的意义: ⑴补偿无功功率,可以增加电网中有功功率的比例常数。

⑵减少发、供电设备的设计容量,减少投资,例如当功率因数cosΦ=0.8增加到cosΦ=0.95时,装1Kvar电容器可节省设备容量0.52KW;反之,增加0.52KW对原有设备而言,相当于增大了发、供电设备容量。因此,对新建、改建工程,应充分考虑无功补偿,便可以减少设计容量,从而减少投资。

⑶降低线损,由公式ΔΡ%=(1-cosΦ/cosΦ)×100%得出其中cosΦ为补偿后的功率因数,cosΦ为补偿前的功率因数则:

cosΦ>cosΦ,所以提高功率因数后,线损率也下降了,减少设计容量、减少投资,增加电网中有功功率的输送比例,以及降低线损都直接决定和影响着供电企业的经济效益。所以,功率因数是考核经济效益的重要指标,规划、实施无功补偿势在必行。 电网中常用的无功补偿方式包括:

① 集中补偿:在高低压配电线路中安装并联电容器组;

② 分组补偿:在配电变压器低压侧和用户车间配电屏安装并联补偿电容器; ③ 单台电动机就地补偿:在单台电动机处安装并联电容器等。

加装无功补偿设备,不仅可使功率消耗小,功率因数提高,还可以充分挖掘设备输送功率的潜力。 确定无功补偿容量时,应注意以下两点:

① 在轻负荷时要避免过补偿,倒送无功造成功率损耗增加,也是不经济的。

② 功率因数越高,每千伏补偿容量减少损耗的作用将变小,通常情况下,将功率因数提高到0.95就是合理补偿

就三种补偿方式而言,无功就地补偿克服了集中补偿和分组补偿的缺点,是一种较为完善的补偿方式: ⑴因电容器与电动机直接并联,同时投入或停用,可使无功不倒流,保证用户功率因数始终处于滞后状态,既有利于用户,也有利于电网。

⑵有利于降低电动机起动电流,减少接触器的火花,提高控制电器工作的可靠性,延长电动机与控制设备的使用寿命。

无功就地补偿容量可以根据以下经验公式确定:Q≤UΙ0式中:Q---无功补偿容量(kvar);U---电动机的额定电压(V);Ι0---电动机空载电流(A);但是无功就地补偿也有其缺点:⑴不能全面取代高压集中补偿和低压分组补偿;众所周之,无功补偿按其安装位置和接线方法可分为:高压集中补偿、低压分组补偿和低压就地补偿。其中就地补偿区域最大,效果也好。但它总的电容器安装容量比其它两种方式要大,电容器利用率也低。高压集中补偿和低压分组补偿的电容器容量相对较小,利用率也高,且能补偿变压器自身的无功损耗。为此,这三种补偿方式各有应用范围,应结合实际确定使用场合,各司其职。

美国斯威尔智能电容器能灵活的应用于高压集中补偿、低压分组补偿和低压就地补偿. 就地(分散)补偿应用

不需要设置专用的无功补偿箱或者无功补偿柜,实现对各种场合的小容量就地补偿。 ■在用电设备旁放置智能电容器 ■在壁挂式配电箱内放置智能电容器

■在工程车间配电设备内(旁)放置智能电容器

■在用户配变小于100kvar的计量柜、配电柜内放置智能电容器

优点:无功补偿距离短,节能降损效果显著,设备接线简单、维护方便。 配置参考:对于小容量负载,按照负载总功率的25%~40%配置智能电容器容量。 例:一台电动机就地补偿方案 电动机额定功率:50kW

无功补偿容量: 15kvar(10kvar+5kvar) 智能电容器数量:1台 SWL-8MZS/450-10.5 无功补偿级数: 0、5、10、15kvar 低压分组补偿的应用

对户外配电变进行就地无功补偿,直接将设备安装于柱挂式户外设备箱内。 优点:体积小、接线简、维护方便;投资小、节能降损效果显著。 配置参考:配变无功补偿容量一般为配变容量的25%~40%。 例:户外配电变压器应用方案 配变容量:200kVA

无功补偿容量:60kvar 2×30kvar(20kvar+10kvar) 智能电容器数量:2台 SWL-8MZS/450-20.10 无功补偿级数:0、10、20、30、40、50、60

安装在箱变低压室,根据配电变压器容量进行补偿,选用若干台智能电容器联机使用。 优点:接线简单、维护方便、成本低、节约空间的显著特点。 配置参考:箱变无功补偿容量一般为配变容量的25%~40%。 例:箱式变集中补偿应用方案 箱变容量:500kVA

无功补偿容量:190kvar 4×40kvar(20kvar+20kvar)+ 1×30kvar(20kvar+10kvar) 智能电容器数量:4台 SWL-8MZS/450-20.20 1台 SWL-8MZS/450-20.10 高压集中补偿的应用

低压无功补偿智能电容器实现在柜体内组装,构成无功自动补偿装置,接线简单、维护方便、节约成本。 优点:补偿效果好,容量可调整性好,接线简单、故障少、运行维护方便。 配置参考:根据成套柜补偿容量的要求进行配置。 低压成套柜配置容量参考: GGD柜型

柜体尺寸:1000mm(宽) ×600mm(深) ×2230(高)mm 可安装智能电容器数量:20台 40kvar(20kvar+20kvar) 无功补偿总容量:800kvar(40kvar×20) MNS柜型

柜体尺寸:600mm(宽) ×800mm(深) ×2200(高)mm 可安装智能电容器数量:12台 40kvar(20kvar+20kvar) 无功补偿总容量:480kvar(40kvar×12)

⑵大容量电力电子装置,普通电容器就地补偿不恰当:随着大型电力电子装置的广泛应用,尤其是采用大容量晶闸管电源供电后,致使电网波形畸变,谐波分量增大,功率因数降低。更由于此类负载经常是快速变化,谐波次数增高,危及供电质量,对通讯设备影响也很大,所以此类负载采用就地补偿是不安全,不恰当的。因为①电力电子装置会产生高次谐波,在负载电感上有部分被抑制。但当负载并联电容器后,高次谐波可顺利通过电容器,这就等效地增加了供电网络中的谐波成分。②由于谐波电流的存在,会增加电容器的负担,容易造成电容器的过流、过热,甚至损坏。③电力电子装置供电的负载如电弧炉、轧钢机等具有冲击性无功负载,这

要求无功补偿的响应速度要快,但并联电容器的补偿方法是难以奏效。

美国斯威尔智能电容器成套设备能满足恶劣环境下的电容补偿要求.美国斯威尔专业开发的功率因数控制器结合智能电容器组,能快速响应电网功率因数突变的问题,毫秒级的捕捉谐波突变.防止过度补偿引起的设备损坏.同时美国斯威尔智能电容器成套设备具有谐波抑制能力,破坏电容与系统的并联谐振,部分吸收系统中的3、5、7次及以上谐波.

⑶电动机起动频繁或经常正反转的场合,不宜采用普通电容器就地补偿:异步电动机直接起动时,起动电流约为额定电流的4-7倍,即使采用降压起动措施,其起动电流也是额定电流的2-3倍。因此在电动机起动瞬间,与电动机并联的电容器势必流过浪涌冲击电流,这对频繁起动的场合,不仅增加线损,而且引起电容器过热,降低使用寿命。 此外,对具有正反转起动的场合,应把补偿电容器接到接触器头电源进线侧,这虽能使电容随电动机的运行而投入。但当接触器刚断开时,电容器会向电动机绕组放电,,引起电动机自激产生高电压,这也有不妥之处。若将补偿电容器接于电源侧,当电动机停运时,电网仍向电容器供给电流,造成电容器负担加重,产生不必要的损耗。为此,对无功补偿功率较大的电容器,如需接在电源进线侧,则应对电容器另外加控制开关,在电动机停运时予以切除。

⑷就地补偿的电容器不宜采用普通电力电容器:推广就地补偿技术时,不宜直接使用普通油浸纸质电力电容器,因为其自愈功能很差,使用中可能产生永久性击穿,甚至引起爆炸,危及人身安全。 应用选型需要考虑的因素

1、谐波含量及分布

配电系统可能产生的电流谐波次数与幅值及电压谐波总畸变率,根据谐波含量确认补偿方案。 2、负荷类型

配电系统现行负荷和非线性负荷占总负荷比例,根据比例确定补偿方案。 3、无功需求

配电系统中如果感性负荷比例大则无功需求大,补偿容量应增大。 4、符合变化情况

配电系统中若静态符合多,则采用静态补偿,若频繁变化负荷多则采用动态跟踪补偿较合适。 5、三相平衡性

配电系统中若三相负荷平衡则采用三相共补,若三相负荷不平衡则采用分相补偿或混合补偿。 无功补偿设计方案参考

基于斯威尔电气提供的智能无功补偿控制器设计的无功补偿方案,可参考下述原则。 非线性负荷比率 三相平衡静态负荷 负荷中非线性设备≤15%变压器容量(主要为线性负荷) 无功补偿设计方案 三相不平衡静态负荷 三相共补,复合开关过零投切, 智能电容器:SWL-8MZS 三相平衡频繁变化负荷 分相补偿或混合补偿, 复合开关过零投切; 电容器:SWL-8MZF 或SWL-8ZMS 分相补偿或三相不平衡频繁变化负荷 三相共补,可控硅开关动态切换 电容器:SWL-DMZS 分相补偿或混合补偿, 可控硅开关动态切换; 电容器:SWL-DMZF 或SWL-DZMS 分相补偿或15%<负荷三相共补 三相共补 中非线性设备比率≤50%变压器容量(存在一定量的谐波) 复合开关过零投切 电容回路中串联6%或12%;滤波电抗 电容器:SWL-LBMZS 混合补偿 复合开关过零投切 电容回路中串联6%或12%非调谐滤波电抗 电容器:SWL-LBMZ或FSWL-LBMZS 破坏电容与系统的并联谐振,部分吸收系统中的3、5、7次及以上谐波 分相补偿或混合补偿 复合开关过零投切 由电容或电抗组成的调谐滤波回路 电容器:SWL-LBMZ或FSWL-LBMZS 完全吸收3、5、7次及以上电流谐波 可控硅开关动态切换 电容回路中串联6%或12%非调谐滤波电抗 电容器:SWL-LBDMZS 混合补偿 可控硅开关动态切换 电容回路中串联6%或12%非调谐滤波电抗 电容器:SWL-LBDM或ZFSWL-LBDMZS 破坏电容与系统的并联谐振,部分吸收系统中的3、5、7次及以上谐波 分相补偿或混合补偿 可控硅开关动态切换 由电容或电抗组成的调谐滤波回路 电容器:SWL-LBDM或ZFSWL-LBDMZS 完全吸收3、5、7次及以上电流谐波 谐波治理目标 破坏电容与系统的并联谐振,部分吸收系统中的3、5、7次及以上谐波 三相共补 复合开关过零投切 由电容或电抗组成的调谐滤波回路 电容器:SWL-LBMZS 破坏电容与系统的并联谐振,部分吸收系统中的3、5、7次及以上谐波 三相共补 可控硅开关动态切换 由电容或电抗组成的调谐滤波回路 电容器:SWL-LBDMZS 负荷中非线性设备比率>50%变压器容量(存在大量谐波) 谐波治理目标 完全吸收3、5、7次及以上电流谐波 完全吸收3、5、7次及以上电流谐波 变频器

百科名片

变频器的英文译名是VFD(Variable-frequency Drive),这可能是现代科技由中文反向译为英文的为数不多实例之一。(但VFD也可解释为Vacuum fluorescent display,真空荧光管,故这种译法并不常用)。变频器是应用变频技术与微电子技术,通过改变电机工作电源的频率和幅度的方式来控制交流电动机的电力传动元件。变频器在中、韩等亚洲地

区受日本厂商影响而曾被称作VVVF(Variable Voltage Variable Frequency Inverter)。

[]{|}变频器原理以及基本知识

1、什么是变频器?

变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。 2、PWM和PAM的不同点是什么?

PWM是英文Pulse Width Modulation(脉冲宽度调制)缩写,按一定规律改变列的脉冲宽度,以调节输出量和波形的一种调值方式。

PAM是英文Pulse Amplitude Modulation (脉冲幅度调制) 缩写,是按一定规律改变脉冲列的脉冲幅度,以调节输出量值和波形的一种调制方式。 3、电压型与电流型有什么不同?

变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是;电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。 4、为什么变频器的电压与频率成比例的改变?

的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。这种控制方式多用于风机、泵类节能型变频器。

5、电动机使用工频电源驱动时,电压下降则电流增加;对于变频器驱动,如果频率下降时电压也下降,那么电流是否增加?

频率下降(低速)时,如果输出相同的功率,则电流增加,但在转矩一定的条件下,电流几乎不变。 6、采用变频器运转时,电机的起动电流、起动转矩怎样?

采用变频器运转,随着电机的加速相应提高频率和电压,起动电流被限制在150%额定电流以下(根据机种不同,为125%~200%)。用工频电源直接起动时,起动电流为6~7倍,因此,将产生机械电气上的冲击。采用变频器传动可以平滑地起动(起动时间变长)。起动电流为额定电流的1.2~1.5倍,起动转矩为70%~120%额定转矩;对于带有转矩自动增强功能的变频器,起动转矩为100%以上,可以带全负载起动。 7、V/f模式是什么意思?

频率下降时电压V也成比例下降,这个问题已在回答4说明。V与f的比例关系是考虑了电机特性而预先决定的,通常在控制器的存储装置(ROM)中存有几种特性,可以用开关或标度盘进行选择 8、按比例地改V和f时,电机的转矩如何变化?

频率下降时完全成比例地降低电压,那么由于交流阻抗变小而直流电阻不变,将造成在低速下产生地转矩有减小的倾向。因此,在低频时给定V/f,要使输出电压提高一些,以便获得一定地起动转矩,这种补偿称增强起动。可以采用各种方法实现,有自动进行的方法、选择V/f模式或调整电位器等方法 9、在说明书上写着变速范围60~6Hz,即10:1,那么在6Hz以下就没有输出功率吗?

在6Hz以下仍可输出功率,但根据电机温升和起动转矩的大小等条件,最低使用频率取6Hz左右,此时电动机可输出额定转矩而不会引起严重的发热问题。变频器实际输出频率(起动频率)根据机种为0.5~3Hz. 10、对于一般电机的组合是在60Hz以上也要求转矩一定,是否可以?

通常情况下时不可以的。在60Hz以上(也有50Hz以上的模式)电压不变,大体为恒功率特性,在 高速下要求相同转矩时,必须注意电机与变频器容量的选择。 11、所谓开环是什么意思?

给所使用的电机装置设速度检出器(PG),将实际转速反馈给控制装置进行控制的,称为“闭环 ”,不用

PG运转的就叫作“开环”。通用变频器多为开环方式,也有的机种利用选件可进行PG反馈.无速度传感器闭环控制方式是根据建立的数学模型根据磁通推算电机的实际速度,相当于用一个虚拟的速度传感器形成闭环控制。

12、实际转速对于给定速度有偏差时如何办?

开环时,变频器即使输出给定频率,电机在带负载运行时,电机的转速在额定转差率的范围内(1%~5%)变动。对于要求调速精度比较高,即使负载变动也要求在近于给定速度下运转的场合,可采用具有PG反馈功能的变频器(选用件)。

13、如果用带有PG的电机,进行反馈后速度精度能提高吗?

具有PG反馈功能的变频器,精度有提高。但速度精度的值取决于PG本身的精度和变频器输出频率的分辨率。

14、失速防止功能是什么意思?

如果给定的加速时间过短,变频器的输出频率变化远远超过转速(电角频率)的变化,变频器将因流过过电流而跳闸,运转停止,这就叫作失速。为了防止失速使电机继续运转,就要检出电流的大小进行频率控制。当加速电流过大时适当放慢加速速率。减速时也是如此。两者结合起来就是失速功能。

15、有加速时间与减速时间可以分别给定的机种,和加减速时间共同给定的机种,这有什么意义? 加减速可以分别给定的机种,对于短时间加速、缓慢减速场合,或者对于小型机床需要严格给定生产节拍时间的场合是适宜的,但对于风机传动等场合,加减速时间都较长,加速时间和减速时间可以共同给定。 16、什么是再生制动?

电动机在运转中如果降低指令频率,则电动机变为异步发电机状态运行,作为制动器而工作,这就叫作再生(电气)制动。

17、是否能得到更大的制动力?

从电机再生出来的能量贮积在变频器的滤波电容器中,由于电容器的容量和耐压的关系,通用变频器的再生制动力约为额定转矩的10%~20%。如采用选用件,可以达到50%~100%。 制动单元},可以达到50%~100%。 18、请说明变频器的保护功能? 保护功能可分为以下两类:

(1) 检知异常状态后自动地进行修正动作,如过电流失速防止,再生过电压失速防止。

(2) 检知异常后封锁电力半导体器件PWM控制信号,使电机自动停车。如过电流切断、再生过电压切断、半导体冷却风扇过热和瞬时停电保护等。

19、为什么用{HYPERLINK \"http://baike.baidu.com/view/21853.htm\"离合器连续负载时,变频器的保护功能就动作?

用离合器连接负载时,在连接的瞬间,电机从空载状态向转差率大的区域急剧变化,流过的大电流导致变频器过电流跳闸,不能运转。

20、在同一工厂内大型电机一起动,运转中变频器就停止,这是为什么? 电机起动时将流过和容量相对应的起动电流,电机定子侧的{HYPERLINK

连接在同一变压器上的变频器将做出欠压或瞬停的判断,因而有时保护功能(IPE)动作,造成停止运转。 21、什么是变频分辨率?有什么意义?

对于的变频器,即使频率指令为模拟信号,输出频率也是有级给定。这个级差的最小单位就称为变频分辨率。

变频分辨率通常取值为0.015~0.5Hz.例如,分辨率为0.5Hz,那么23Hz的上面可变为23.5、24.0 Hz,因

此电机的动作也是有级的跟随。这样对于像连续卷取控制的用途就造成问题。在这种情况下,如果分辨率为 电网中的电力负荷如电动机、变压器等,大部分属于感性负荷,在运行过程中需向这些设备提供相应的无功功率。在电网中安装并联电容器等无功补偿设备以后,可以提供感性负载所消耗的无功功率,减少了电网电源向感性负荷提供、由线路输送的无功功率,由于减少了无功功率在电网中的流动,因此可以降低线路和变压器因输送无功功率造成的电能损耗,这就是无功补偿。

无功补偿的基本原理是:把具有容性功率负荷的装置与感性功率负荷并联接在同一电路,能量在两种负荷之间相互交换。这样,感性负荷所需要的无功功率可由容性负荷输出的无功功率补偿。无功补偿的意义: ⑴补偿无功功率,可以增加电网中有功功率的比例常数。

⑵减少发、供电设备的设计容量,减少投资,例如当功率因数cosΦ=0.8增加到cosΦ=0.95时,装1Kvar电容器可节省设备容量0.52KW;反之,增加0.52KW对原有设备而言,相当于增大了发、供电设备容量。因此,对新建、改建工程,应充分考虑无功补偿,便可以减少设计容量,从而减少投资。

⑶降低线损,由公式ΔΡ%=(1-cosΦ/cosΦ)×100%得出其中cosΦ为补偿后的功率因数,cosΦ为补偿前的功率因数则:

cosΦ>cosΦ,所以提高功率因数后,线损率也下降了,减少设计容量、减少投资,增加电网中有功功率的输送比例,以及降低线损都直接决定和影响着供电企业的经济效益。所以,功率因数是考核经济效益的重要指标,规划、实施无功补偿势在必行。 电网中常用的无功补偿方式包括:

① 集中补偿:在高低压配电线路中安装并联电容器组;

② 分组补偿:在配电变压器低压侧和用户车间配电屏安装并联补偿电容器; ③ 单台电动机就地补偿:在单台电动机处安装并联电容器等。

加装无功补偿设备,不仅可使功率消耗小,功率因数提高,还可以充分挖掘设备输送功率的潜力。 确定无功补偿容量时,应注意以下两点:

① 在轻负荷时要避免过补偿,倒送无功造成功率损耗增加,也是不经济的。

② 功率因数越高,每千伏补偿容量减少损耗的作用将变小,通常情况下,将功率因数提高到0.95就是合理补偿

就三种补偿方式而言,无功就地补偿克服了集中补偿和分组补偿的缺点,是一种较为完善的补偿方式: ⑴因电容器与电动机直接并联,同时投入或停用,可使无功不倒流,保证用户功率因数始终处于滞后状态,既有利于用户,也有利于电网。

⑵有利于降低电动机起动电流,减少接触器的火花,提高控制电器工作的可靠性,延长电动机与控制设备的使用寿命。

无功就地补偿容量可以根据以下经验公式确定:Q≤UΙ0式中:Q---无功补偿容量(kvar);U---电动机的额定电压(V);Ι0---电动机空载电流(A);但是无功就地补偿也有其缺点:⑴不能全面取代高压集中补偿和低压分组补偿;众所周之,无功补偿按其安装位置和接线方法可分为:高压集中补偿、低压分组补偿和低压就地补偿。其中就地补偿区域最大,效果也好。但它总的电容器安装容量比其它两种方式要大,电容器利用率也低。高压集中补偿和低压分组补偿的电容器容量相对较小,利用率也高,且能补偿变压器自身的无功损耗。为此,这三种补偿方式各有应用范围,应结合实际确定使用场合,各司其职。

美国斯威尔智能电容器能灵活的应用于高压集中补偿、低压分组补偿和低压就地补偿. 就地(分散)补偿应用

不需要设置专用的无功补偿箱或者无功补偿柜,实现对各种场合的小容量就地补偿。 ■在用电设备旁放置智能电容器 ■在壁挂式配电箱内放置智能电容器

■在工程车间配电设备内(旁)放置智能电容器

■在用户配变小于100kvar的计量柜、配电柜内放置智能电容器

优点:无功补偿距离短,节能降损效果显著,设备接线简单、维护方便。 配置参考:对于小容量负载,按照负载总功率的25%~40%配置智能电容器容量。 例:一台电动机就地补偿方案 电动机额定功率:50kW

无功补偿容量: 15kvar(10kvar+5kvar) 智能电容器数量:1台 SWL-8MZS/450-10.5 无功补偿级数: 0、5、10、15kvar 低压分组补偿的应用

对户外配电变进行就地无功补偿,直接将设备安装于柱挂式户外设备箱内。 优点:体积小、接线简、维护方便;投资小、节能降损效果显著。 配置参考:配变无功补偿容量一般为配变容量的25%~40%。 例:户外配电变压器应用方案 配变容量:200kVA

无功补偿容量:60kvar 2×30kvar(20kvar+10kvar) 智能电容器数量:2台 SWL-8MZS/450-20.10 无功补偿级数:0、10、20、30、40、50、60

安装在箱变低压室,根据配电变压器容量进行补偿,选用若干台智能电容器联机使用。 优点:接线简单、维护方便、成本低、节约空间的显著特点。 配置参考:箱变无功补偿容量一般为配变容量的25%~40%。 例:箱式变集中补偿应用方案 箱变容量:500kVA

无功补偿容量:190kvar 4×40kvar(20kvar+20kvar)+ 1×30kvar(20kvar+10kvar) 智能电容器数量:4台 SWL-8MZS/450-20.20 1台 SWL-8MZS/450-20.10 高压集中补偿的应用

低压无功补偿智能电容器实现在柜体内组装,构成无功自动补偿装置,接线简单、维护方便、节约成本。 优点:补偿效果好,容量可调整性好,接线简单、故障少、运行维护方便。 配置参考:根据成套柜补偿容量的要求进行配置。 低压成套柜配置容量参考: GGD柜型

柜体尺寸:1000mm(宽) ×600mm(深) ×2230(高)mm 可安装智能电容器数量:20台 40kvar(20kvar+20kvar) 无功补偿总容量:800kvar(40kvar×20) MNS柜型

柜体尺寸:600mm(宽) ×800mm(深) ×2200(高)mm 可安装智能电容器数量:12台 40kvar(20kvar+20kvar) 无功补偿总容量:480kvar(40kvar×12)

⑵大容量电力电子装置,普通电容器就地补偿不恰当:随着大型电力电子装置的广泛应用,尤其是采用大容量晶闸管电源供电后,致使电网波形畸变,谐波分量增大,功率因数降低。更由于此类负载经常是快速变化,谐波次数增高,危及供电质量,对通讯设备影响也很大,所以此类负载采用就地补偿是不安全,不恰当的。因为①电力电子装置会产生高次谐波,在负载电感上有部分被抑制。但当负载并联电容器后,高次谐波可顺利通过电容器,这就等效地增加了供电网络中的谐波成分。②由于谐波电流的存在,会增加电容器的负担,容易造成电容器的过流、过热,甚至损坏。③电力电子装置供电的负载如电弧炉、轧钢机等具有冲击性无功负载,这要求无功补偿的响应速度要快,但并联电容器的补偿方法是难以奏效。

美国斯威尔智能电容器成套设备能满足恶劣环境下的电容补偿要求.美国斯威尔专业开发的功率因数控制器结合智能电容器组,能快速响应电网功率因数突变的问题,毫秒级的捕捉谐波突变.防止过度补偿引起的设备损坏.同时美国斯威尔智能电容器成套设备具有谐波抑制能力,破坏电容与系统的并联谐振,部分吸收系统中的3、5、7次及以上谐波.

⑶电动机起动频繁或经常正反转的场合,不宜采用普通电容器就地补偿:异步电动机直接起动时,起动电流约为额定电流的4-7倍,即使采用降压起动措施,其起动电流也是额定电流的2-3倍。因此在电动机起动瞬间,与电动机并联的电容器势必流过浪涌冲击电流,这对频繁起动的场合,不仅增加线损,而且引起电容器过热,降低使用寿命。 此外,对具有正反转起动的场合,应把补偿电容器接到接触器头电源进线侧,这虽能使电容随电动机的运行而投入。但当接触器刚断开时,电容器会向电动机绕组放电,,引起电动机自激产生高电压,这也有不妥之处。若将补偿电容器接于电源侧,当电动机停运时,电网仍向电容器供给电流,造成电容器负担加重,产生不必要的损耗。为此,对无功补偿功率较大的电容器,如需接在电源进线侧,则应对电容器另外加控制开关,在电动机停运时予以切除。

⑷就地补偿的电容器不宜采用普通电力电容器:推广就地补偿技术时,不宜直接使用普通油浸纸质电力电容器,因为其自愈功能很差,使用中可能产生永久性击穿,甚至引起爆炸,危及人身安全。 应用选型需要考虑的因素

1、谐波含量及分布

配电系统可能产生的电流谐波次数与幅值及电压谐波总畸变率,根据谐波含量确认补偿方案。 2、负荷类型

配电系统现行负荷和非线性负荷占总负荷比例,根据比例确定补偿方案。 3、无功需求

配电系统中如果感性负荷比例大则无功需求大,补偿容量应增大。 4、符合变化情况

配电系统中若静态符合多,则采用静态补偿,若频繁变化负荷多则采用动态跟踪补偿较合适。 5、三相平衡性

配电系统中若三相负荷平衡则采用三相共补,若三相负荷不平衡则采用分相补偿或混合补偿。 无功补偿设计方案参考

基于斯威尔电气提供的智能无功补偿控制器设计的无功补偿方案,可参考下述原则。 非线性负荷比率 三相平衡静态负荷 负荷中非线性设备≤15%变压器容量(主要为线性负荷) 无功补偿设计方案 三相不平衡静态负荷 三相共补,复合开关过零投切, 智能电容器:SWL-8MZS 三相平衡频繁变化负荷 分相补偿或混合补偿, 复合开关过零投切; 电容器:SWL-8MZF 或SWL-8ZMS 分相补偿或混合补偿 三相不平衡频繁变化负荷 三相共补,可控硅开关动态切换 电容器:SWL-DMZS 分相补偿或混合补偿, 可控硅开关动态切换; 电容器:SWL-DMZF 或SWL-DZMS 分相补偿或混合补偿 15%<负荷中非线性设三相共补 复合开三相共补 可控硅

因篇幅问题不能全部显示,请点此查看更多更全内容

Top