/**
* @company: 北京动力节点
* @author:韩国庆
*/
public class BinarySearch {
public static void main(String[] args) {
int[] array = new int[]{10,11,12,13,14,15,16,17};
int target = 10;
int index = search(array, target);
System.out.println(index);
}
public static int search(int[] array,int target){
//最小索引指针
int min = 0;
int max = array.length-1;
while (min<=max){
//算出平均索引位置
int mid = (min+max)/2;
if (array[mid]== target){
return mid;
}
if (array[mid]<target){
min = mid+1;
}
if (array[mid]>target){
max = mid-1;
}
}
return -1;
}
}
数组 arr = [1, 2, 3, ......., 100]
假如我们需要查找的值 1
使用二分查找的话,我们需要多次递归,才能找到 1
使用插值查找算法
int mid = left + (right – left) * (findVal – arr[left]) / (arr[right] – arr[left])
int mid = 0 + (99 - 0) * (1 - 1)/ (100 - 1) = 0 + 99 * 0 / 99 = 0
比如我们查找的值 100
int mid = 0 + (99 - 0) * (100 - 1) / (100 - 1) = 0 + 99 * 99 / 99 = 0 + 99 = 99
package com.bjpowernode.select;
/**
* @company: 北京动力节点
* @author:韩国庆
*/
public class InsertSelect {
public static void main(String[] args) {
int[] array = {1,2,3,4,5,6};
int left = 0;
int right = array.length-1;
int searchVal = 1;
System.out.println(select(array,left,right,searchVal));
}
public static int select(int[] array,int left,int right,int searchVal){
/**
* 防止数组越界
*/
if (left>right || searchVal<array[0] || searchVal>array[array.length-1]){
return -1;
}
int mid = left+(right-left)*(searchVal-array[left])/(array[right]-array[left]);
int midValue = array[mid];
if (searchVal>midValue){
return select(array,mid+1,right,searchVal);
}else if (searchVal<midValue){
return select(array,left,mid-1,searchVal);
}else {
return mid;
}
}
}
斐波那契不再是中间,而是位于黄金分割点附近,即 mid=low+F(k-1)-1
由斐波那契数列F[k]=F(k-1)+F(k-2)的性质,可以得到 (F[k]-1) = (F(k-1) -1) +(F[k-2]-1) +1 .
对F(k-1)-1的理解:
1) 只要顺序表的长度为F[k]-1,则可以将该表分成长度为F[k-1]-1和F[k-2]-1的两段,从而中间位置为mid=low+F(k-1)-1。
2)类似的,每一字段也可以用相同的方式分割
3)但顺序表长度n不一定刚好等于F[K]-1,所以需要将原来的顺序表长度n增加至F[K]-1。这里的k值只要能使得F[K]-1恰好大于 或等于n即可,由以下代码得到,顺序表长度增加后,新增的位置(从n+1到F[k]-1位置).都为n信置的值即可。
package com.bjpowernode.select;
import java.util.Arrays;
/**
* @company: 北京动力节点
* @author:韩国庆
*/
public class FibonacciSelect {
public static void main(String[] args) {
int[] array = {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, };
System.out.println(select(array,13));
}
/**
* f[k] = (f[k-1])+ (f[k-2])
* @return
*/
public static int[] f(){
int[] f = new int[20];
f[0] = 1;
f[1] = 1;
for (int i = 2;i<f.length;i++){
f[i] = f[i-1]+f[i-2];
}
return f;
}
/**
* mid = low+F(k-1)-1
* @param array
* @param key
* @return
*/
public static int select(int[] array,int key){
int low = 0;
int hight = array.length-1;
int k = 0;
int mid = 0;
int[] f = f();
/**
* 找分割点
*/
while (hight>f[k]-1){
k++;
}
int[] temp = Arrays.copyOf(array,f[k]);
/**
* {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, } -=》{1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ,,,}
*/
for (int i = hight+1;i<temp.length;i++){
temp[i] = array[hight];
}
while (low<=hight){
mid = low+f[k-1]-1;
// f[k-1]+f[k-2] = f[k];
if (key<temp[mid]){
hight=mid-1;
k--;
}else if (key>temp[mid]){
low = mid+1;
k-=2;
}else{
if (mid<=hight){
return mid;
}else {
return hight;
}
}
}
return -1;
}
}
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- how234.cn 版权所有 赣ICP备2023008801号-2
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务